Mesh networks over LoRa

Dionysis Grigoropoulos

2023-10-21

Dionysis Grigoropoulos

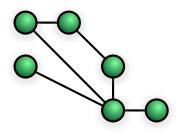
Who am I

- https://f.erethon.com/mesh2023.pdf
- dgrig/Erethon
- Infrastructure / Automation / Security / Tinkering
- email: dgrig@erethon.com
- matrix: @dgrig:erethon.com

We're gonna speedrun over these topics

- Mesh networks
- LoRa and modulation schemes
- LoRa over "cheap" ESP32 based boards
- Software to create mesh networks over LoRa
 - Meshtastic
 - Reticulum

Mesh Networks



Dionysis Grigoropoulos

 In a mesh network nodes connect directly to each other when possible, in a dynamic and non-hierrarchical manner. No central orchestration.

- In a mesh network nodes connect directly to each other when possible, in a dynamic and non-hierrarchical manner. No central orchestration.
- Multiple paths between nodes

- In a mesh network nodes connect directly to each other when possible, in a dynamic and non-hierrarchical manner. No central orchestration.
- Multiple paths between nodes

• All participants of the network are equal!

Dionysis Grigoropoulos

- All participants of the network are equal!
- Get around unreliable infrastructure

Dionysis Grigoropoulos

- All participants of the network are equal!
- Get around unreliable infrastructure
- Emergency Communications, Events, areas with no other coverage (hiking)

- All participants of the network are equal!
- Get around unreliable infrastructure
- Emergency Communications, Events, areas with no other coverage (hiking)
- A thing of the past?

- All participants of the network are equal!
- Get around unreliable infrastructure
- Emergency Communications, Events, areas with no other coverage (hiking)
- A thing of the past?
- Internet of Things depends on meshing

LoRa (Long Range)

Dionysis Grigoropoulos

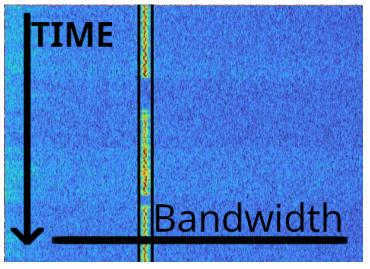
LoRa vs LoRaWAN

- LoRa is a proprietary "radio communication technique"
 - Designed by Cycleo, bought by Semtech
 - Essentially it's a proprietary modulation scheme based on Chirp Spread Spectrum

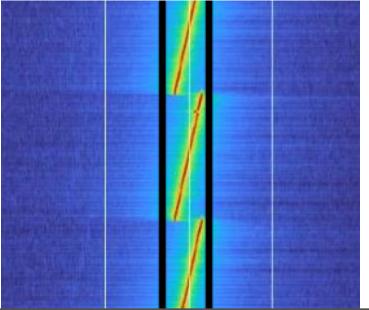
LoRa vs LoRaWAN

- LoRa is a proprietary "radio communication technique"
 - Designed by Cycleo, bought by Semtech
 - Essentially it's a proprietary modulation scheme based on Chirp Spread Spectrum
- LoRaWAN is an ITU standard that builds on top of LoRa
 - Supported by LoRa Alliance, open(?) and non-profit association with the aim of supporting and advancing LoRaWAN

LoRa vs LoRaWAN


- LoRa is a proprietary "radio communication technique"
 - Designed by Cycleo, bought by Semtech
 - Essentially it's a proprietary modulation scheme based on Chirp Spread Spectrum
- LoRaWAN is an ITU standard that builds on top of LoRa
 - Supported by LoRa Alliance, open(?) and non-profit association with the aim of supporting and advancing LoRaWAN
- These two together define the low power wide area network (LPWAN) LoRa

• Chirp Spread Spectrum, sorry what?



Dionysis Grigoropoulos

• Chirp Spread Spectrum, sorry what?

Dionysis Grigoropoulos

Dionysis Grigoropoulos

Mesh networks over LoRa

10/43

• License free bands (433, 863-870MHz in Europe)

Dionysis Grigoropoulos

- License free bands (433, 863-870MHz in Europe)
- Very low power, resistant to noise
 - Bluetooth: 2.5mW, 10m
 - WiFi: 80mW, 50m
 - LoRa: depends on settings, 5mW, 2km

- License free bands (433, 863-870MHz in Europe)
- Very low power, resistant to noise
 - Bluetooth: 2.5mW, 10m
 - WiFi: 80mW, 50m
 - $\circ~$ LoRa: depends on settings, 5mW, 2km
- Data rate: 11bps to 21.88kbps

 Bandwidth, 7.8kHz up to 500kHz, in reality 125-500kHz

Dionysis Grigoropoulos

- Bandwidth, 7.8kHz up to 500kHz, in reality 125-500kHz
- Spreading Factor, 6-12, practically 7-12
 - \circ Smaller = faster, higher = resistance to noise
 - Doubling of time on air
- These are physical characteristics of the signal

- Bandwidth, 7.8kHz up to 500kHz, in reality 125-500kHz
- Spreading Factor, 6-12, practically 7-12
 - \circ Smaller = faster, higher = resistance to noise
 - Doubling of time on air
- These are physical characteristics of the signal
- Coding rate, ratio of data bits to transmission bits

- Bandwidth, 7.8kHz up to 500kHz, in reality 125-500kHz
- Spreading Factor, 6-12, practically 7-12
 - \circ Smaller = faster, higher = resistance to noise
 - Doubling of time on air
- These are physical characteristics of the signal
- Coding rate, ratio of data bits to transmission bits
- Legislation is a bit weird (power, duty cycle)

Video

Dionysis Grigoropoulos

How to transmit/receive LoRa

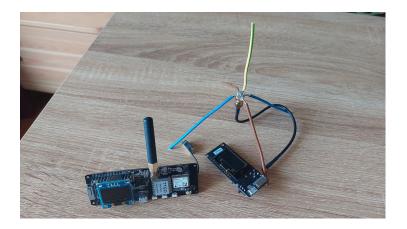
• LoRa ICs (~2\$), hats, development boards

Dionysis Grigoropoulos

How to transmit/receive LoRa

- LoRa ICs (~2\$), hats, development boards
- SDR (Software Defined Radio)!

Dionysis Grigoropoulos


LoRa Boards

¹⁵/₄₃

Dionysis Grigoropoulos

LoRa Boards

Dionysis Grigoropoulos

//ESHT/ST/C

An open source, off-grid, decentralized, mesh network built to run on affordable, low-power devices

Dionysis Grigoropoulos

 Open Source (GPLv3), off-grid, mesh network

Dionysis Grigoropoulos

- Open Source (GPLv3), off-grid, mesh network
- ProtoBuff for serialization
 - $\circ~$ Allows for easy cross platform development

- Open Source (GPLv3), off-grid, mesh network
- ProtoBuff for serialization
 - Allows for easy cross platform development
- Firmware

- Open Source (GPLv3), off-grid, mesh network
- ProtoBuff for serialization
 - $\circ~$ Allows for easy cross platform development
- Firmware
- Apps that consume these ProtoBuff definitions
 - Mobile applications
 - Python CLI
 - Web

- Single "channel" for all devices in a mesh
 - AES256 PSK (pre-shared key) shared between all nodes
 - Chat room with all participants
 - \circ "1-1" rooms

- Single "channel" for all devices in a mesh
 - AES256 PSK (pre-shared key) shared between all nodes
 - Chat room with all participants
 - \circ "1-1" rooms
- Support for automatic querying of sensors
 GPS
 - I2C (temp, humidity, etc)

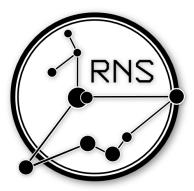
- Single "channel" for all devices in a mesh
 - AES256 PSK (pre-shared key) shared between all nodes
 - $\circ~$ Chat room with all participants
 - \circ "1-1" rooms
- Support for automatic querying of sensors
 - GPS
 - I2C (temp, humidity, etc)
- Bridging to MQTT for "tunneling" Meshtastic over TCP/IP

- Single "channel" for all devices in a mesh
 - AES256 PSK (pre-shared key) shared between all nodes
 - $\circ~$ Chat room with all participants
 - \circ "1-1" rooms
- Support for automatic querying of sensors
 - GPS
 - I2C (temp, humidity, etc)
- Bridging to MQTT for "tunneling" Meshtastic over TCP/IP
- Longest range contact 254km!

Meshtastic

- Networks
 - Canadian Network
 - Austin Mesh
- Map of nodes (1540 entries)
- Simple routing protocol, 3 hops by default
- GitHub & Discord

Meshtastic


15:19 ∅ ← ShortFast	
	Ro: 03/02/2023 14:49 📿
T minus 60	
If244c198	03/02/2023 14:50
Roz	
!f244c198	03/02/2023 14:50
	F
	03/02/2023 14:50 🖉
	т
	03/02/2023 18:05 🖄
	Y 03/02/2023 18:19
	T 03/02/2023 18:24 🖄
	Ytty
	03/02/2023 18:24
	Ygggg
	03/02/2023 18:24 🖄
Send Text	1

Meshtastic

Dionysis Grigoropoulos

Dionysis Grigoropoulos

 ""Cryptography based networking stack for building local and wide-area networks using simple hardware. Reticulum is not one network. It is a tool for building thousands of networks.""

- ""Cryptography based networking stack for building local and wide-area networks using simple hardware. Reticulum is not one network. It is a tool for building thousands of networks.""
- It works over Ethernet / WiFi / TCP/IP / I2P / LoRa

- ""Cryptography based networking stack for building local and wide-area networks using simple hardware. Reticulum is not one network. It is a tool for building thousands of networks.""
- It works over Ethernet / WiFi / TCP/IP / I2P / LoRa
- MIT Licensed

• End-to-end encrypted and end-to-end connectivity

Dionysis Grigoropoulos

- End-to-end encrypted and end-to-end connectivity
- Forward Secrecy

Dionysis Grigoropoulos

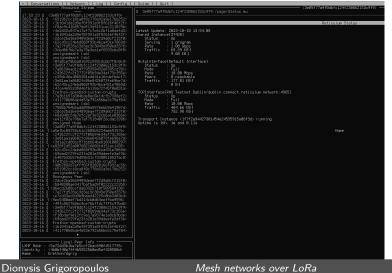
- End-to-end encrypted and end-to-end connectivity
- Forward Secrecy
- Portability of addresses

- End-to-end encrypted and end-to-end connectivity
- Forward Secrecy
- Portability of addresses
- Bandwidth aware interfaces

- Python reference implementation
 - $\circ~$ C++ implementation by the community in the works
 - $\circ~$ Some interest in a Rust implementation

- Python reference implementation
 - $\circ~$ C++ implementation by the community in the works
 - $\circ~$ Some interest in a Rust implementation
- Because it's written in Python and you can't run Python in microcontrollers, you need another device to do the heavy lifting.
 - For now

- Python reference implementation
 - $\circ~$ C++ implementation by the community in the works
 - Some interest in a Rust implementation
- Because it's written in Python and you can't run Python in microcontrollers, you need another device to do the heavy lifting.
 For now
- It's not based on TCP/IP, it's using its own lower-bw protocol. Lightweight Extensible Message Format (LXMF) based on msgpack


- Python reference implementation
 - $\circ~$ C++ implementation by the community in the works
 - Some interest in a Rust implementation
- Because it's written in Python and you can't run Python in microcontrollers, you need another device to do the heavy lifting.
 For now
- It's not based on TCP/IP, it's using its own lower-bw protocol. Lightweight Extensible Message Format (LXMF) based on msgpack
- Docs are amazing

- NomadNet, browser + messaging
 - Pages use a custom Markdown

Dionysis Grigoropoulos

Reticulum software NomadNet, browser + messaging Pages use a custom Markdown



RNSH, for spawning shells over Reticulum
 11.2km shell session!

Dionysis Grigoropoulos

- RNSH, for spawning shells over Reticulum
 11.2km shell session!
- Mesh with nodes that have no line of sight

Dionysis Grigoropoulos

Rnode

Dionysis Grigoropoulos

- Rnode
- tncattach, allows one to attach KISS TNC devices as network interfaces

Dionysis Grigoropoulos

Reticulum Community

 Development/discussions happens on GitHub and Matrix

Dionysis Grigoropoulos

Reticulum Community

- Development/discussions happens on GitHub and Matrix
- There's also a Public Testnet over TCP/IP and I2P for running experiments

Dionysis Grigoropoulos

Contribute!

Dionysis Grigoropoulos

Reticulum vs Meshtastic

- Different end goals
 - Reticulum is more open-ended and powerful
 - Meshtastic is more polished and has a smaller scope

Reticulum vs Meshtastic

- Different end goals
 - Reticulum is more open-ended and powerful
 - Meshtastic is more polished and has a smaller scope
- ProtoBuffs make it easy to update the protocol and extend it, also porting to new devices

Other meshes over LoRa?

• Ripple

Dionysis Grigoropoulos

• Feel free to ask me in the corridor sessions ;)

Dionysis Grigoropoulos

Links

- https://unsigned.io/ understanding-lora-parameters/
- https://wirelesspi.com/ understanding-lora-phy-long-range-phys
- https: //github.com/GUVWAF/Meshtasticator
- https://meshtastic.org/

Links

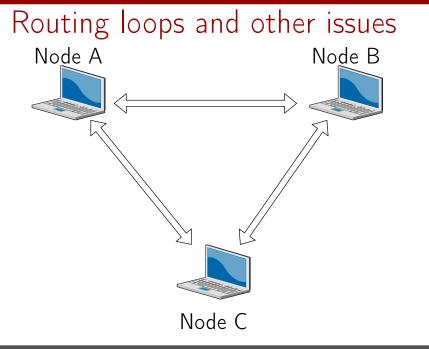
- https://reticulum.network/
- https://github.com/markqvist/RNode_ Firmware
- https: //github.com/markqvist/tncattach

Bonus Slides

Dionysis Grigoropoulos

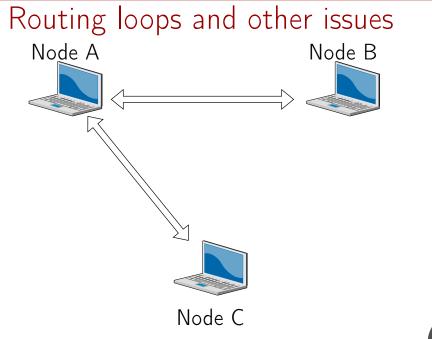
Notable mesh networks

- AWMN
- Freifunk (~1750 routers, ~4k clients)
- guifi.net (~38k nodes)
- AREDNet (~7k nodes)

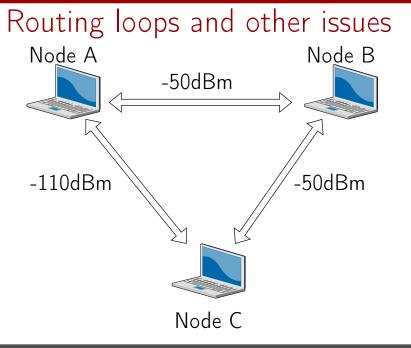

• It's a mess ;), more than 70 schemes

Dionysis Grigoropoulos

- It's a mess ;), more than 70 schemes
- Nodes need to have a local routing table
 - Complex & Resource intensive
 - Power hungry as well


- It's a mess ;), more than 70 schemes
- Nodes need to have a local routing table
 Complex & Resource intensive
 - Power hungry as well
- Nodes might not be stationary

Dionysis Grigoropoulos


Mesh networks over LoRa

43

Dionysis Grigoropoulos

Dionysis Grigoropoulos

- Routing schemes:
 - DVR (Distance (hops) Vector Routing)
 - DSDV (Destination Sequenced Distance-Vector Routing)
 - DSR (Dynamic Source Routing)